trait ZAlgebra[V] extends RingAssociativeAlgebra[V, Int] with Ring[V]
Given any Ring[A]
we can construct a RingAlgebra[A, Int]
. This is
possible since we can define fromInt
on Ring
generally.
Linear Supertypes
Type Hierarchy
Ordering
- Alphabetic
- By Inheritance
Inherited
- ZAlgebra
- RingAssociativeAlgebra
- Ring
- Rng
- Rig
- MultiplicativeMonoid
- Semiring
- MultiplicativeSemigroup
- CModule
- RightModule
- LeftModule
- AdditiveCommutativeGroup
- AdditiveCommutativeMonoid
- AdditiveCommutativeSemigroup
- AdditiveGroup
- AdditiveMonoid
- AdditiveSemigroup
- Serializable
- Serializable
- Any
- Hide All
- Show All
Visibility
- Public
- All
Abstract Value Members
-
abstract
def
getClass(): Class[_]
- Definition Classes
- Any
-
implicit abstract
def
scalar: CRing[Int]
- Definition Classes
- ZAlgebra → CModule → RightModule → LeftModule
- implicit abstract def vector: Ring[V]
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- Any
-
final
def
##(): Int
- Definition Classes
- Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- Any
-
def
additive: CommutativeGroup[V]
- Definition Classes
- AdditiveCommutativeGroup → AdditiveCommutativeMonoid → AdditiveCommutativeSemigroup → AdditiveGroup → AdditiveMonoid → AdditiveSemigroup
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
equals(arg0: Any): Boolean
- Definition Classes
- Any
-
def
fromBigInt(n: BigInt): V
- Definition Classes
- Ring
-
def
fromInt(n: Int): V
- Definition Classes
- ZAlgebra → Ring
-
def
hashCode(): Int
- Definition Classes
- Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
isOne(a: V)(implicit ev: algebra.Eq[V]): Boolean
- Definition Classes
- MultiplicativeMonoid
-
def
isZero(a: V)(implicit ev: algebra.Eq[V]): Boolean
- Definition Classes
- AdditiveMonoid
-
def
minus(v: V, w: V): V
- Definition Classes
- ZAlgebra → AdditiveGroup
-
def
multiplicative: algebra.Monoid[V]
- Definition Classes
- MultiplicativeMonoid → MultiplicativeSemigroup
-
def
negate(v: V): V
- Definition Classes
- ZAlgebra → AdditiveGroup
-
def
one: V
- Definition Classes
- ZAlgebra → MultiplicativeMonoid
-
def
plus(v: V, w: V): V
- Definition Classes
- ZAlgebra → AdditiveSemigroup
-
def
positivePow(a: V, n: Int): V
- Attributes
- protected[this]
- Definition Classes
- MultiplicativeSemigroup
-
def
positiveSumN(a: V, n: Int): V
- Attributes
- protected[this]
- Definition Classes
- AdditiveSemigroup
-
def
pow(a: V, n: Int): V
- Definition Classes
- MultiplicativeMonoid → MultiplicativeSemigroup
-
def
product(as: TraversableOnce[V]): V
- Definition Classes
- MultiplicativeMonoid
-
def
sum(as: TraversableOnce[V]): V
- Definition Classes
- AdditiveMonoid
-
def
sumN(a: V, n: Int): V
- Definition Classes
- AdditiveGroup → AdditiveMonoid → AdditiveSemigroup
-
def
times(v: V, w: V): V
- Definition Classes
- ZAlgebra → MultiplicativeSemigroup
-
def
timesl(r: Int, v: V): V
- Definition Classes
- ZAlgebra → LeftModule
-
def
timesr(v: V, r: Int): V
- Definition Classes
- CModule → RightModule
-
def
toString(): String
- Definition Classes
- Any
-
def
tryProduct(as: TraversableOnce[V]): Option[V]
- Definition Classes
- MultiplicativeMonoid → MultiplicativeSemigroup
-
def
trySum(as: TraversableOnce[V]): Option[V]
- Definition Classes
- AdditiveMonoid → AdditiveSemigroup
-
def
zero: V
- Definition Classes
- ZAlgebra → AdditiveMonoid